Strategies for Next Generation HPC Applications and Systems (with an update on HPCG)

Michael A. Heroux Center for Computing Research Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

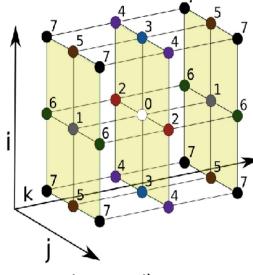
THE HIGH PERFORMANCE CONJUGATE GRADIENTS (HPCG) BENCHARK

Michael Heroux Sandia National Laboratories, USA

Collaborators: Jack Dongarra,Piotr Luszczek University of Tennessee, Knoxville, USA

HPCG Snapshot

- High Performance Conjugate Gradients (HPCG).
- Solves Ax=b, A large, sparse, b known, x computed.
- An optimized implementation of PCG contains essential computational and communication patterns that are prevalent in a variety of methods for discretization and numerical solution of PDEs
- Patterns:
 - Dense and sparse computations.
 - Dense and sparse collectives.
 - Multi-scale execution of kernels via MG (truncated) V cycle.
 - Data-driven parallelism (unstructured sparse triangular solves).
- Strong verification (via spectral properties of PCG).


Model Problem Description

- Synthetic discretized 3D PDE (FEM, FVM, FDM).
- Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
- Local domain:
- Process layout:
- Global domain:
- Sparse matrix:
 - 27 nonzeros/row interior.
 - 8 18 on boundary.
 - Symmetric positive definite.

 $(n_x \times n_y \times n_z)$

 $(np_x \times np_y \times np_z)$

 $(n_x * np_x) \times (n_y * np_y) \times (n_z * np_z)$

27-point stencil operator

Merits of HPCG

- Includes major communication/computational patterns.
 - Represents a minimal collection of the major patterns.
- Rewards investment in:
 - High-performance collective ops.
 - Local memory system performance.
 - Low latency cooperative threading.
- Detects/measures variances from bitwise reproducibility.
- Executes kernels at several (tunable) granularities:
 - nx = ny = nz = 104 gives
 - nlocal = 1,124,864; 140,608; 17,576; 2,197
 - ComputeSymGS with multicoloring adds one more level:
 - 8 colors.
 - Average size of color = 275.
 - Size ratio (largest:smallest): 4096
 - Provide a "natural" incentive to run a big problem.

HPL vs. HPCG: Bookends

- Some see HPL and HPCG as "bookends" of a spectrum.
 - Applications teams know where their codes lie on the spectrum.
 - Can gauge performance on a system using both HPL and HPCG numbers.
- System balance:
 - Unbalanced: Wide gap between the HPCG and HPL number.
 - Balanced: Narrow gap between the HPCG and HPL number.

HPCG Status

HPCG 3.0 Release, Nov 11, 2015

- Available on GitHub.com
 - Using GitHub issues, pull requests, Wiki.
- Intel, Nvidia optimized 3.0 version available.
 Riken/Fujitsu, IBM in progress.
- Riken/Fujitsu, IBM have 2.4 optimized version.
- For ISC'16, HPCG 3.0 any new results should be obtained using 3.0 unless not possible.
- Quick Path option will make this easier.

Main HPCG 3.0 Features

See <u>http://www.hpcg-benchmark.org/software/index.html</u> for full discussion

- Problem generation is timed.
- Memory usage counting and reporting.
- Memory bandwidth measurement and reporting
- "Quick Path" option to make obtaining results on production systems easier.
- Provides 2.4 rating and 3.0 rating in output.
- Command line option (--rt=) to specify the run time.

Other Items

- Reference version on GitHub:
 - https://github.com/hpcg-benchmark/hpcg
 - Website: hpcg-benchark.org.
 - Mail list <u>hpcg.benchmark@gmail.com</u>
- Student competitions:
 - HPCG used as "Mystery App" in SC15 Student Cluster Competition.
 - Will be used as standard in SC16.
 - Will be used for ASC16 Student Supercomputer Challenge
- HPCG-optimized kernels going into vendor libraries.
- Next event: ISC'16:
 - 63 entries so far (42 ISC15, 25 SC14, 15 ISC14)
 - Quick Path option should accelerate adoption.

Special Issue: International Journal of High Performance Computer Applications

- 1. Reference HPCG.
- 2. Intel.
- 3. Nvidia.
- 4. NUDT.
- 5. Riken.
- 6. Coming a little later: IBM.
- Discussion and results from vendor optimizations.
- Some highlights...

Rewards investment high performance collectives.

"Edison spends only 1.9% of the total time in allreduce while SuperMUC, Occigen, and Stampede spend 12.9%,5.9%, and 22.0%, respectively. We believe this difference primarily comes from that Edison uses a low-diameter high-radix Aries network with Dragonfly topology."

Intel HPCG Paper

Collectives futures

 "Addressing the bottleneck in collective communications will be also an important challenge as the collectives are shown to often take well above 10% of the total time.
 Even though high-radix Dragonfly topology considerably speedups the collectives, we envision that continued innovation in network infrastructure will be necessary due to ever increasing concurrency in high performance computing systems."

Impact broader set of computations

"The optimizations described in this paper are not limited to the HPCG benchmark and can be also applicable to other problems and sparse solvers as exemplified by our evaluation with unstructured matrices shown in [our previous report]."

Looking toward next generation memories

"We expect challenges and opportunities laid out for HPCG in the next few years. One of the significant challenges will be effective use of emerging memory technologies and the accompanied diversification of memory hierarchy."

Detecting FP Variations (Reproducibility)

Residual=4.25079640861055785883e-08 (0x1.6d240066fda73p-25) Residual=4.25079640861032293954e-08 (0x1.6d240066fd910p-25) Residual=4.25079640861079079289e-08 (0x1.6d240066fdbd3p-25) Residual=4.25079640861054528568e-08 (0x1.6d240066fda60p-25) Residual=4.25079640861068491377e-08 (0x1.6d240066fdb33p-25) Residual=4.25079640861059094605e-08 (0x1.6d240066fdb33p-25)

"The code correctly identified small variations in the residuals, caused by the network off-loading collectives. There is a small improvement in performance but the offloading collectives introduce a small non-reproducibility."

Vendor improvement: Intel 4X

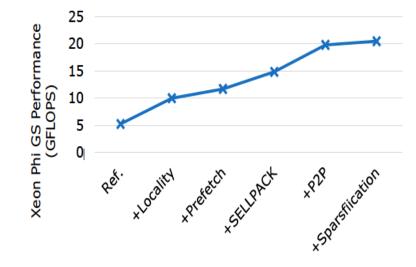


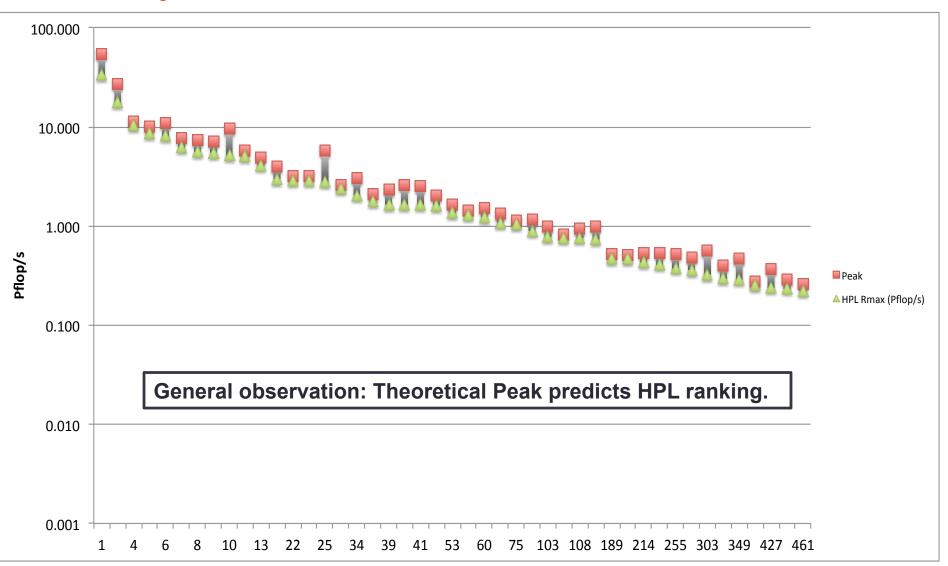
Fig. 5: The impact of optimizations on the Xeon Phi performance of SymGS parallelized with task scheduling.

- Ref.: the reference implementation ran with 240 MPI ranks
- +Locality: storage layout optimization for locality (Section IV-A1)
- +Prefetch: software prefetches
- +SELLPACK: vectorization-friendly matrix storage format [43]
- +P2P: point-to-point synchronization instead of barriers
- +Sparsification: eliminating unnecessary synchronization [10]

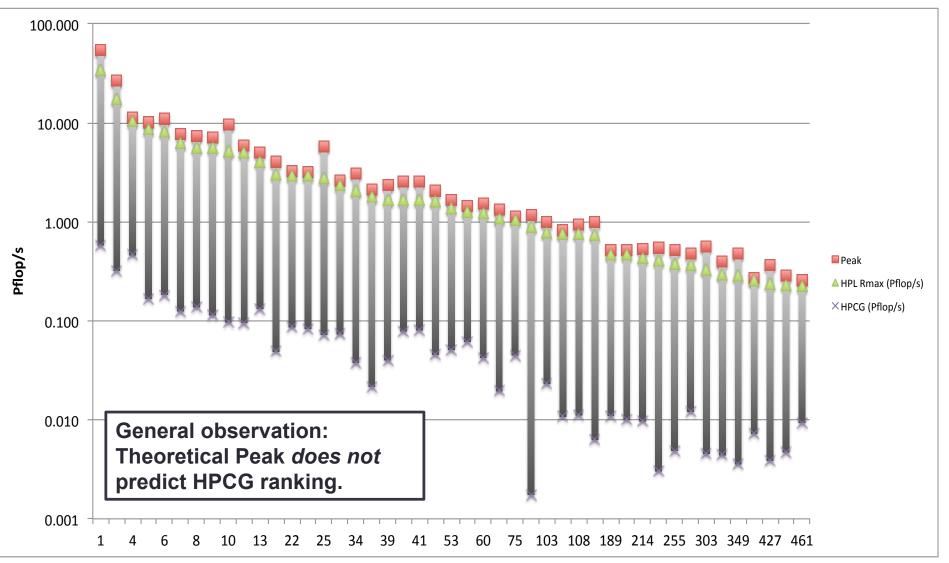
Summary

- HPCG is
 - Addressing original goals.
 - Rewarding vendor investment in features we care about.
- HPCG has traction.
 - Original goal of top 50 systems seems reachable, and more.
- Biggest challenge (my bias):
 - Pre-mature conclusions based on incomplete analysis of reference version.
 - IJHPCA papers dispel these concerns.
- Version 3.X is the final planned major version.
- HPL and HPCG make a nice set of bookends.

HPCG RANKINGS NOVEMBER 2015


HPCG Results, Nov 2015, 1-10

Rank	Site	Computer	Cores	Rmax	HPC G	HPCG /HPL	% of Peak
1	NSCC / Guangzhou	Tianhe-2 NUDT, Xeon 12C 2.2GHz + Intel Xeon Phi 57C + Custom	3,120,000	33.863	0.5800	1.7%	1.1%
	RIKEN Advanced Institute for Computational Science	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	705,024	10.510	0.4608	4.4%	4.1%
3	DOE/SC/Oak Ridge Nat Lab	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x	560,640	17.590	0.3223	1.8%	1.2%
4	DOE/NNSA/LANL/SNL	Trinity - Cray XC40, Intel E5-2698v3, Aries custom	301,056	8.1009	0.1826	2.3%	1.6%
	DOE/SC/Argonne National Laboratory	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom	786,432	8.587	0.1670	1.9%	1.7%
	HLRS/University of Stuttgart	Hazel Hen - Cray XC40, Intel E5-2680v3, Infiniband FDR	185,088	5.640	0.1380	2.4%	1.9%
7	NASA / Mountain View	Pleiades - SGI ICE X, Intel E5-2680, E5-2680V2, E5-2680V3, Infiniband FDR	186,288	4.089	0.1319	3.2%	2.7%
	Swiss National Supercomputing Centre (CSCS)	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x	115,984	6.271	0.1246	2.0%	1.6%
9	KAUST / Jeda	Shaheen II - Cray XC40, Intel Haswell 2.3 GHz 16C, Cray Aries	196,608	5.537	0.1139	2.1%	1.6%
10	TACC/Univ. of Texas	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.7GHz, Infiniband, Phi SE10P	522,080	5.168	0.0968	1.9%	1.0%


HPCG Results, Nov 2015, 11-20

-	·					
Site	Computer	Cores	Rmax	HPCG	HPCG/ HPL	% of Peak
Forschungszentrum Jülich	JUQUEEN - BlueGene/Q	458,752	5.0089	5.0089	1.9%	1.9%
Information Technology Center, Nagoya University	ITC, Nagoya - Fujitsu PRIMEHPC FX100	92,160	2.91	2.91	3.0%	3.0%
Leibniz Rechenzentrum	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR	147,456	2.897	2.897	2.9%	2.9%
EPSRC/University of Edinburgh	ARCHER - Cray XC30, Intel Xeon E5 v2 12C 2.700GHz, Aries interconnect	118,080	1.643			4.9%
DOE/SC/LBNL/NFRSC	Edison - Cray XC30, Intel Xeon E5-2695v2 12C 2.4GHz, Aries interconnect	133.824	1.655	1.655	4.8%	4.8%
National Institute for Fusion Science	Plasma Simulator - Fujitsu PRIMEHPC FX100, SPARC64 Xifx, Custom	82,944	2.376			3.1%
GSIC Center, Tokyo Institute of Technology	TSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C 2.93GHz, Infiniband QDR, NVIDIA K20x	76,032	2.785	2.785	2.6%	2.6%
HLRS/Universitaet Stuttgart	Hornet - Cray XC40, Xeon E5-2680 v3 2.5 GHz, Cray Aries	94,656	2.763	2.763	2.4%	2.4%
Max-Planck-Gesellschaft MPI/ IPP		65.320	1.283	1.283	4.8%	4.8%
CEIST / JAMSTEC	Earth Simulator - NEC SX-ACE	8,192	0.487	0.487	11.9%	11.9%
	Forschungszentrum Jülich Information Technology Center, Nagoya University Leibniz Rechenzentrum EPSRC/University of Edinburgh DOE/SC/LBNL/NERSC National Institute for Fusion Science GSIC Center, Tokyo Institute of Technology HLRS/Universitaet Stuttgart Max-Planck-Gesellschaft MPI/ IPP	Forschungszentrum JülichJUQUEEN - BlueGene/QInformation Technology Center, Nagoya UniversityITC, Nagoya - Fujitsu PRIMEHPC FX100Leibniz RechenzentrumSuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDREPSRC/University of EdinburghARCHER - Cray XC30, Intel Xeon E5 v2 12C 2.700GHz, Aries interconnectDOE/SC/LBNL/NERSCInterconnectNational Institute for Fusion SciencePlasma Simulator - Fujitsu PRIMEHPC FX100, SPARC64 Xifx, CustomGSIC Center, Tokyo Institute of TechnologyTSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C 2.93GHz, Infiniband QDR, NVIDIA K20xHLRS/Universitaet StuttgartNax-Planck-Gesellschaft MPI/ iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband	Forschungszentrum JülichJUQUEEN - BlueGene/Q458,752Information Technology Center, Nagoya UniversityITC, Nagoya - Fujitsu PRIMEHPC FX10092,160SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR147,456Leibniz RechenzentrumInfiniband FDR147,456EPSRC/University of EdinburghARCHER - Cray XC30, Intel Xeon E5118,080Edison - Cray XC30, Intel Xeon E5-2695v2 12C 2.4GHz, Aries interconnect133,824National Institute for Fusion SciencePlasma Simulator - Fujitsu PRIMEHPC FX100, SPARC64 Xifx, Custom82,944GSIC Center, Tokyo Institute of TechnologyTSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C 2.93GHz, Infiniband QDR, NVIDIA K20x76,032HLRS/Universitaet Stuttgart2.5 GHz, Cray Aries94,656Max-Planck-Gesellschaft MPI/ iDataPlex DX360M4, Intel Xeon IPP65,32065,320	IndexIndexIndexIndexForschungszentrum JülichJUQUEEN - BlueGene/Q458,7525.0089Information Technology Center, Nagoya UniversityITC, Nagoya - Fujitsu PRIMEHPC FX10092,1602.91SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR147,4562.897EPSRC/University of EdinburghARCHER - Cray XC30, Intel Xeon E5 v2 12C 2.700GHz, Aries interconnect118,0801.643DOE/SC/LBNL/NERSCinterconnect133,8241.655National Institute for Fusion of TechnologyPlasma Simulator - Fujitsu PRIMEHPC FX100, SPARC64 Xifx, Custom82,9442.376GSIC Center, Tokyo Institute of TechnologyTSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C 2.93GHz, Infiniband QDR, NVIDIA K20x76,0322.785HLRS/Universitaet Stuttgart2.5 GHz, Cray Aries S-52680v2 10C 2.800GHz, Infiniband 	Forschungszentrum JülichJUQUEEN - BlueGene/Q458,7525.0089Information Technology Center, Nagoya UniversityITC, Nagoya - Fujitsu PRIMEHPC FX10092,1602.912.91SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR147,4562.8972.897Leibniz RechenzentrumInfiniband FDR147,4562.8972.897EPSRC/University of EdinburghARCHER - Cray XC30, Intel Xeon E5 v2 12C 2.700GHz, Aries interconnect118,0801.6431.643DOE/SC/LBNL/NERSCinterconnect133,8241.6551.655National Institute for Fusion SciencePlasma Simulator - Fujitsu PRIMEHPC SL390S G7, Xeon X5670 6C 2.93GHz, Infiniband QDR, NVIDIA K20x76,0322.7852.785HLRS/Universitaet Stuttgart2.5 GHz, Cray Aries94,6562.7632.763Max-Planck-Gesellschaft MPI/IDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband65,3201.2831.283	Forschungszentrum JülichJUQUEEN - BlueGene/Q458,7525.00895.00891.9%Information Technology Center, Nagoya UniversityITC, Nagoya - Fujitsu PRIMEHPC FX10092,1602.912.913.0%SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Leibniz RechenzentrumInfiniband FDR147,4562.8972.8972.9%EPSRC/University of EdinburghARCHER - Cray XC30, Intel Xeon E5 v2 12C 2.700GHz, Aries interconnect118,0801.6431.6434.9%DOE/SC/LBNL/NERSCinterconnect133,8241.6551.6554.8%National Institute for Fusion SciencePlasma Simulator - Fujitsu PRIMEHPC FX100, SPARC64 Xifx, Custom82,9442.3762.3763.1%GSIC Center, Tokyo Institute of TechnologyTSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C 2.93GHz, Infiniband QDR, NVIDIA K20x76,0322.7852.7852.6%Hurs/Universitaet Stuttgart2.5 GHz, Cray Aries94,6562.7632.7632.4%Max-Planck-Gesellschaft MPI/iDaaPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband G5,3201.2831.2834.8%

Comparison Peak, HPL

Comparison Peak, HPL, & HPCG

HPCG Highlights

- 63 Systems:
 - Up from 42 at ISC'15, 25 at SC'14 and 15 at ISC'14.
 - Most entries from the very top of the TOP500 list.
- New supercomputers (also coming to TOP500) are:
 - New #4: DOE Trinity (Haswell-only), HPL #6.
 - New #6: HLRS "Hazel Hen", HPL #8.
- Strong showing from Japan and NEC SX machines:
 - Achieve over 10% of peak performance with HPCG

Final Note on HPCG "Quick Path"

- If you have a system that is installed, but not on the HPCG rankings list, please consider the Quick Path execution option.
 - Executes minimal path through the code.
 - Takes just a few minutes to run.
 - so should hopefully be easy to fit into the maintenance cycle of production systems.
- Please contact us if you are interested in this option.

Part II

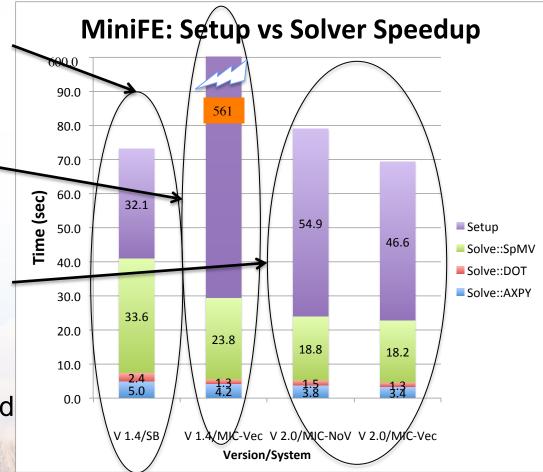
Strategies for Next Generation HPC Applications and Systems

Michael A. Heroux Scalable Algorithms Department Sandia National Laboratories

SNL Collaborators: Erik Boman, Marc Gamell, Carter Edwards, James, Elliot, Mark Hoemmen, Siva Rajamanickam, Keita Teranishi, Christian Trott IDEAS Project: Lois McInnes, David Bernholdt, David Moulton, Hans Johansen

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

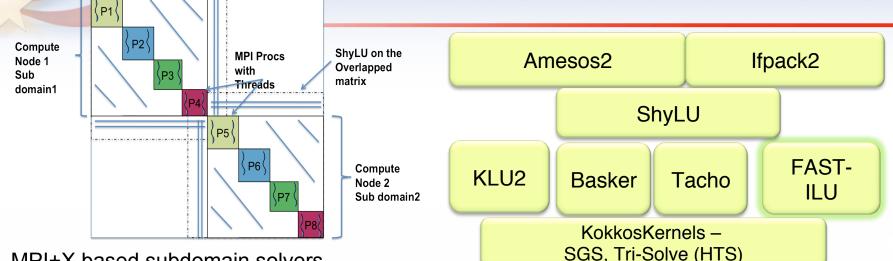
Outline


- Background.
- "Easy" and "Hard".
- SW Engineering and Productivity.
- Application Design and Productivity.
- Productivity Incentives.

The work ahead of us: Threads and vectors MiniFE 1.4 vs 2.0 as Harbingers

28

- Typical MPI-only run:
 Balanced setup vs solve
- First MIC run: _____
 Thread/vector solver
 - No-thread setup
- V 2.0: Thread/vector
 Lots of work:
 - Data placement, const /restrict declarations, avoid shared writes, find race conditions, ...
 - Unique to each app


"Easy" Work in Progress

- Thread-scalable algorithms:
 - Turning out to be feasible.
 - Clever ideas: Fast-ILU (Chow, Anzt, Rajamanickam, etc.)
 - Lots to do, but steady progress
 - Much evidence in today's talks.
- Current Thread Programming Environments:
 - C++, OpenMP, others: Working.
 - Runtimes: Still a lot of work, but progress.
- Lots to do, but community is focused.

Trilinos/ShyLU and Subdomain Solvers : Overview

Led by Siva Rajamanickam, Sandia

- MPI+X based subdomain solvers
 - Decouple the notion of one MPI rank as one subdomain: Subdomains can span multiple MPI ranks each with its own subdomain solver using X or MPI+X
 - Epetra based solver, Tpetra interface still being developed
 - Trilinos Solver Factory a big step forward to get this done (*M. Hoemmen*)
- Subpackages of ShyLU: Multiple Kokkos-based options for on-node parallelism
 - Basker : LU or ILU (t) factorization (J. Booth)
 - Tacho: Incomplete Cholesky IC (k) (K. Kim)
 - Fast-ILU: Fast-ILU factorization for GPUs (A. Patel)
- KokkosKernels: Coloring based Gauss-Seidel (M. Deveci), Triangular Solves
- Experimental code base under active development.

More "Easy" Work in Progress

- Resilience:
 - CPR: Compression, NVRAM, Offloading.
 - Steady progress, long life extension.
 - LFLR: Good progress with ULFM.
 - Example Paper: Local Recovery And Failure Masking For Stencilbased Applications At Extreme Scales
 - Marc Gamell, Keita Teranishi, Michael A. Heroux, Jackson Mayo, Hemanth Kolla, Jacqueline Chen, Manish Parashar
 <u>http://sc15.supercomputing.org/schedule/event_detail?evid=pap682</u>
- System-level error detection/correction.
 - Many unexploited options available. Talk with Al Gara, Intel.
- Conjecture:
 - System developers will not permit reduced reliability until the user community produces more resilient apps.

"Hard" Work

- •Billions (yes, billions) SLOC of encoded science & engineering.
- Challenge:
 - -Transfer, refactor, rewrite for modern systems.
 - -Do so with modest investment bump up.
 - -Deliver science at the same time.
 - -Make the next disruption easier to address.

From the US NSCI Announcement (Fact sheet):

Improve HPC application developer productivity.

Current HPC systems are very difficult to program, requiring careful measurement and tuning to get maximum performance on the targeted machine. Shifting a program to a new machine can require repeating much of this process, and it also requires making sure the new code gets the same results as the old code. The level of expertise and effort required to develop HPC applications poses a major barrier to their widespread use.

Government agencies will support research on new approaches to building and programming HPC systems that make it possible to express programs at more abstract levels and then automatically map them onto specific machines. In working with vendors, agencies will emphasize the importance of programmer productivity as a design objective. Agencies will foster the transition of improved programming tools into actual practice, making the development of applications for HPC systems no more difficult than it is for other classes of large-scale systems.

https://www.whitehouse.gov/sites/default/files/microsites/ostp/nsci_fact_sheet.pdf

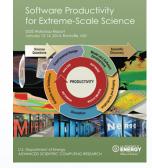
Productivity Better, Faster, Cheaper: Pick all three

Confluence of trends

- Fundamental trends:
 - Disruptive HW changes: Requires thorough algorithm/code refactoring
 - Demands for coupling: Multiphysics, multiscale
- Challenges:

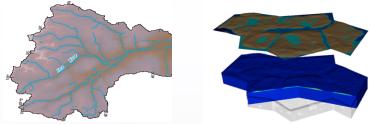
35

- Need refactorings: Really, continuous change
- Modest app development funding: No monolithic apps
- Requirements are unfolding, evolving, not fully known a priori
- Opportunities:
 - Better design and SW practices & tools are available
 - Better SW architectures: Toolkits, libraries, frameworks
- Basic strategy: Focus on productivity


- 15Interoperable Design of Extremeproductivity scale Application Software (IDEAS)

Motivation

Enable increased scientific productivity, realizing the potential of extreme- scale computing, through a new interdisciplinary and agile approach to the scientific software ecosystem.


Objectives

- Address confluence of trends in hardware and increasing demands for predictive multiscale, multiphysics simulations.
- Respond to trend of continuous refactoring with efficient agile software engineering methodologies and improved software design.

Impact on Applications & Programs

Terrestrial ecosystem use cases tie IDEAS to modeling and simulation goals in two Science Focus Area (SFA) programs and both Next Generation Ecosystem Experiment (NGEE) programs in DOE Biologic and Environmental Research (BER).

Approach

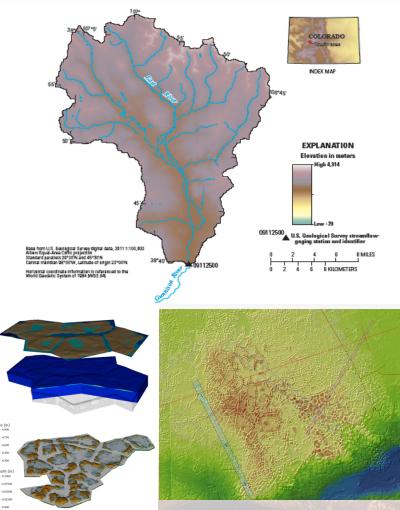
ASCR/BER partnership ensures delivery of both crosscutting methodologies and metrics with impact on real application and programs.

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL) BER Lead: David Moulton (LANL)

Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL) Integration and synergistic advances in three communities deliver scientific productivity; outreach establishes a new holistic perspective for the broader scientific community.

www.ideas-productivity.org

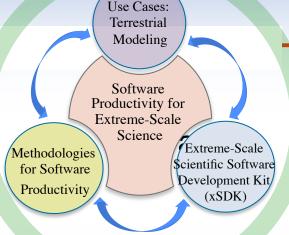

IDEAS project structure and interactions

DOE Program Managers ASCR: Thomas Ndousse-Fetter BER: Paul Bayer, David Lesmes	IDEAS: Interoperable Applica ASCR Co-Leads: Mike Heroux (S BER Lead: J. David Moulton (LAN	Executive Advisory Board John Cary (Tech-X) Mike Glass (SNL) Susan Hubbard (LBNL) Doug Kothe (ORNL) Sandy Landsberg (DOD) Paul Messina (ANL)					
BER Use Cases Lead: J. David Moulton (LANL) Carl Steefel (LBNL) *1 Scott Painter (ORNL) *2 Reed Maxwell (CSM) *3 Glenn Hammond (SNL) Tim Scheibe (PNNL) Laura Condon (CSM) Ethan Coon (LANL) Dipankar Dwivedi (LBNL) Jeff Johnson (LBNL) Eugene Kikinzon (LANL) Sergi Molins (LBNL)	Methodologies for Software Productivity Lead: Mike Heroux (SNL) Roscoe Bartlett (ORNL) Todd Gamblin* (LLNL) Christos Kartsaklis (ORNL) Pat McCormick (LANL) Sri Hari Krishna Narayanan (ANL) Andrew Salinger* (SNL) Jason Sarich (ANL) Dali Wang (ORNL) Jim Willenbring (SNL)	Extreme-Scale Scientific Software Development Kit Lead: Lois Curfman McInnes (ANL) Alicia Klinvex (SNL) Jed Brown (ANL) Irina Demeshko (SNL) Anshu Dubey (LBNL) Sherry Li (LBNL) Vijay Mahadevan (ANL) Daniel Osei-Kuffuor (LLNL) Barry Smith (ANL) Mathew Thomas (PNNL) Ulrike Yang (LLNL)	Outreach and Community Lead: David Bernholdt (ORNL) Katie Antypas* (NERSC) Lisa Childers* (ALCF) Judy Hill* (OLCF)				
Steve Smith (LLNL) Carol Woodward (LLNL) Xiaofan Xang (PNNL)		*1 *2 *3: Leads: Use Cases 1, 2, 3					
Xiaofan Yang (PNNL) Crosscutting Lead: Hans Johansen (LBNL) Sept 2015							
	SFAs NGEE Exascale C CLM ACME Exascale F BER Terrestrial Programs DOE Ex						

Office of Science

Use cases: Multiscale, multiphysics representation of watershed dynamics

- 38
 - Use Case 1: Hydrological and biogeochemical cycling in the Colorado River System
 - Use Case 2: Thermal hydrology and carbon cycling in tundra at the Barrow Environmental Observatory
 - Use Case 3: Hydrologic, land surface, and atmospheric process coupling over the continental United States
 - Leverage and complement existing SBR and TES programs:
 - LBNL and PNNL SFAs
 - NGEE Arctic and Tropics
 - General approach:
 - Leverage existing open source application codes
 - Improve software development practices
 - Targeted refactoring of interfaces, data structures, and key components to facilitate interoperability
 - Modernize management of multiphysics integration and multiscale coupling



IDEAS interconnections

- Use cases: Drive efforts. Traceability efforts
 - But generalized for future efforts

39


- Methodologies ("HowTo") for SWP:
 - Outreach and Communi - Infrastructure, testing, porting, refactoring, portability, etc.
 - Workflows, lifecycles: Document and formalize. Identify best practices
- xSDK: frameworks + components + libraries
 - Build apps by aggregation and composition
- Outreach: Foster communication, adoption, interaction
- First of a kind: Focus on software productivity •

SW Engineering & Productivity

"A scientist builds in order to learn; an engineer learns in order to build." - Fred Brooks

Scientist: Barely-sufficient building. Engineer: Barely-sufficient learning.

Both: Insufficiency leads to poor SW.

Software Engineering and HPC: Efficiency vs Other Quality Metrics

	How focusing on the factor below affects the factor to the right	Correctness	Usability	Efficiency	Reliability	Integrity	Adaptability	Accuracy	Robustness	Source: <i>Code Complete</i> Steve McConnell
	Correctness	↑		↑	↑			↑	¥	
	Usability		↑				↑	↑		
\langle	Efficiency	¥		↑	¥	¥	♦	¥		\mathbf{D}
	Reliability	↑			1	↑		↑	¥	
	Integrity			✦	↑	↑				
	Adaptability					✦	₳		↑	
	Accuracy	↑		¥	1		♦	↑	¥	Helps it 🕈
a ferra	Robustness	¥	↑	¥	¥	¥	↑	¥	↑	Hurts it 🕇

TriBITS: One Deliberate Approach to SE4CSE

Component-oriented SW Approach from Trilinos, CASL Projects, LifeV, ... Goal: "Self-sustaining" software

Allow Exploratory Research to Remain Productive: Minimal practices for basic research in early phases

Enable Reproducible Research: Minimal software quality aspects needed for producing credible

TriBITS Lifecycle Maturity Levels

0: Exploratory

- 1: Research Stable
- 2: Production Growth
- 3: Production Maintenance
- -1: Unspecified Maturity

research, researchers will produce better research that will stand a better chance of being published in quality journals that require reproducible research

Improve Overall Development Productivity: Focus on the right SE practices at the right times, and the right priorities for a given phase/maturity level, developers work more productively with acceptable overhead

Improve Production Software Quality: Focus on foundational issues first in earlyphase development, higher-quality software will be produced as other elements of software quality are added

Better Communicate Maturity Levels with Customers: Clearly define maturity levels so customers and stakeholders will have the right expectations

End of Life?

44

Long-term maintenance and end of life issues for Self-Sustaining Software:

- User community can help to maintain it (e.g., LAPACK).
- If the original development team is disbanded, users can take parts they are using and maintain it long term.
- Can stop being built and tested if not being currently used.
- However, if needed again, software can be resurrected, and continue to be maintained.

NOTE: Distributed version control using tools like Git greatly help in reducing risk and sustaining long lifetime.

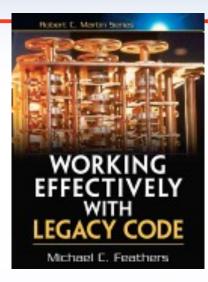
Addressing existing Legacy Software

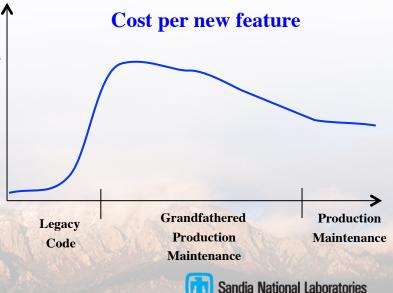
- One definition of "Legacy Software": Software that is too far from away from being Self-Sustaining Software, i.e:
 - Open-source
 - Core domain distillation document
 - Exceptionally well testing
 - Clean structure and code
 - Minimal controlled internal and external dependencies
 - Properties apply recursively to upstream software
- Question: What about all the existing "Legacy" Software that we have to continue to develop and maintain? How does this lifecycle model apply to such software?
- Answer: Grandfather them into the TriBITS Lifecycle Model by applying the Legacy Software Change Algorithm.

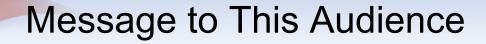
45

Grandfathering of Existing Packages

46


Agile Legacy Software Change Algorithm:

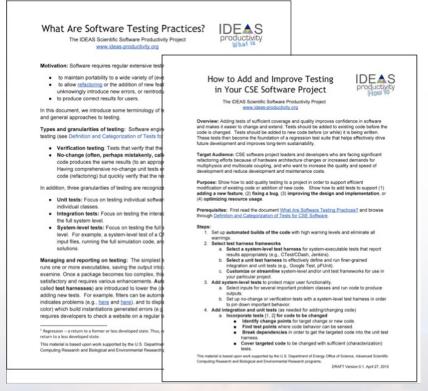

- 1. Identify Change Points
- 2. Break Dependencies
- 3. Cover with Unit Tests
- 4. Add New Functionality with Test Driven Development (TDD)
- 5. Refactor to removed duplication, clean up, etc.


Grandfathered Lifecycle Phases:

- 1. Grandfathered Research Stable (GRS) Code
- 2. Grandfathered Production Growth (GPG) Code
- 3. Grandfathered Production Maintenance (GPM) Code

NOTE: After enough iterations of the Legacy Software Change Algorithm the software may approach Self-Sustaining software and be able to remove the "Grandfathered" prefix.

Write tests now, while (or before) writing your intended production software.



IDEAS 'What is' and 'How to' docs

48

- Motivation: Scientific software teams have a wide range of levels of maturity in software engineering practices
 - Baseline survey of xSDK and BER Use Case teams
- Approach:
 - 'What Is' docs: 2-page characterizations of important software project topics
 - 'How To' docs: brief sketch of best practices
 - Emphasis on ``bite-sized" topics enables CSE software teams to consider improvements at a small but impactful scale.
- Initial emphasis:
 - What is CSE Software Productivity?
 - What are Software Testing Practices?
 - How to Add and Improve Testing in Your CSE Software Project
- Topics in progress:
 - Refactoring tools and approaches
 - Best practices for using interoperable libraries
 - Designing for performance portability
 - Etc.

https://ideas-productivity.org/resources/howtos

Impact: Provide baseline nomenclature and foundation for next steps in SW productivity and SW engineering for CSE teams

Continual Process Improvement Example: Managing issues

- Issue: Bug report, feature request
- Approaches:

. . .

49

- Short-term memory, office notepad
- ToDo.txt on computer desktop (1 person)
- Issues.txt in repository root (small co-located team)
- Web-based tool + Kanban (distributed, larger team)
- Web-based tool + Scrum (full-time dev team)
- IDEAS project:
 - Jira Agile + Confluence: Turnkey web platform (ACME too)
 - Kanban: Simplest of widely known Agile SW dev processes

General Strategy: Assess your current processes, identify and execute improvement. Always trying to improve your team or personal best practices.

Informal, less

Formal, more

training

training

Kanban principles

- Limit number of "In Progress" tasks
- Productivity improvement:

50

- Optimize "flexibility vs swap overhead" balance. No overcommitting.
- Productivity weakness exposed as bottleneck. Team must identify and fix the bottleneck.
 Effective in R&D setting. Avoids a deadline-
- Effective in R&D setting. Avoids a deadlinebased approach. Deadlines are dealt with in a different way.
- Provides a board for viewing and managing issues

moment Tuesday

IDEAS Confluence, Jira Agile, Kanban Pages / IDEAS Common Home Developer Guide, on Managing IDEAS Project Activities Using JIRA Agile and Kanban Confluence site Created by Michael Heroux, last modified by Jim Willenbring about an hour ago Contents: Overview Standard JIRA Agile Issue Type Definitions IDEAS Issue Management Structure IDEAS Projects Kanban board Board - \approx Issue Status Viewing Issues QUICK FILTERS: No subtasks No ToDo Epics No epics HowTo Outreach UseCase **xSDK** Only My Issues **FY15** ... Show more Entering an IDEAS Project Activity Managing Existing IDEAS Issues 24 of 64 To Do 6 of 24 In Progress 5 of 13 Selected 6 of 32 Done Release... **HOW-10** HOW-22 HOW-7 L HOW-1 Develop plan an agile HowTo-2.1: Assess and Based on assessment. Hans adds IDEAS leads to measure SE maturity within software ecosystem lifecycle recommend use case testing JIRA and Confluence model (ASELM) for **IDEAS** teams practices and infrastructure HowTo-2.1: Establish sci HowTo-2.2: Best practice. HOW-14 L HOW-2 Kanban Board, on HowTo-2.1: Measure SW Write up summary notes from **HOW-36 HOW-28** productivity improvement and Methodology telecon Create a Performance Create Confluence page for benefits Jira site. Portability What-Is Document guiding IDEAS team member on how to use Jira HOW-12 HOW-9 HowTo-2.1: Develop Wha... Four columns: HowTo-2.1: Adapt and pr... HowTo-2.1: Establish Hans vells at Procurement scientific software ecosystem about Pcard **HOW-37** lifecvcle model L **HOW-16** Το Do Coordinate all interested Single repository ait workflow IDEAS team members to 1 HOW-11 best practices. L discus Jenkins setup/use **HOW-18** HowTo-2.1: Develop What Is Selected Conduct a GQM style survey HowTo-2.1: Establish sci.. HowTo-2.1: Provide traini... and How To Content for refactoring opportunities and Improving CSE SW Practices needs of UseCases In Progress HOW-24 L **HOW-38** HowTo-2.1: Establish sci HOW-40 Develop strategy for Assess status of use case PP testing HowTo-2.1: Adapt and addressing contributor Done HOW-19 agreements for open-source provide tools & processes HowTo-2.1: Assess and ... that will enhance IDEAS & Evaluate the readiness of UseCases in Identifying Т HOW-42 change points, Finding test Т **HOW-26** HOW-41 Develop training material on LTJ Develop a list of future How how to use Jira Agile and HowTo-2.1: Establish sci HowTo-2.1: Provide training to topics to post on ideas-Kanban opportunities for IDEAS Team productivity.org members HowTo-2.1: Provide traini... HOW-35 HowTo-2.1: Develop Wha... Document How the IDEAS HOW-4 Project will Use Jira for Issue

Message to This Audience

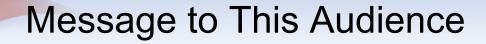
Improve your issue tracking habits:

- Nothing -> Desktop/todo.txt
- Desktop/todo.txt -> clone/todo.txt
- clone/todo.txt -> Git Issues
- Git Issues -> Git Issues + Kanban or Jira + Kanban

Three Application Design Strategies for Productivity & Sustainability

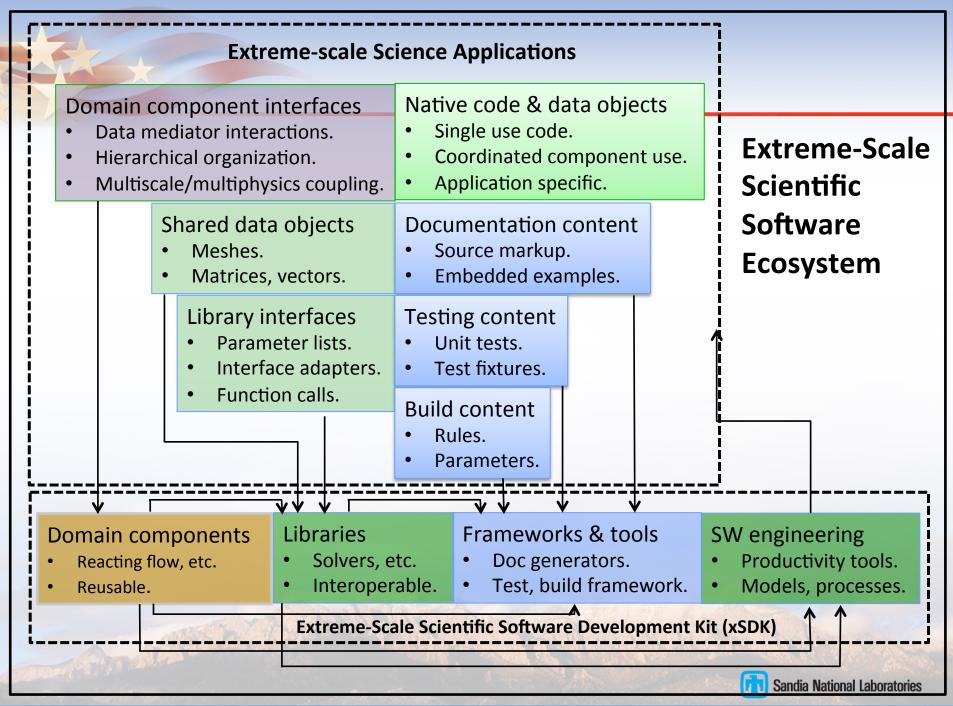
Strategy 1: Array and Execution Abstraction

Multi-dimensional Dense Arrays

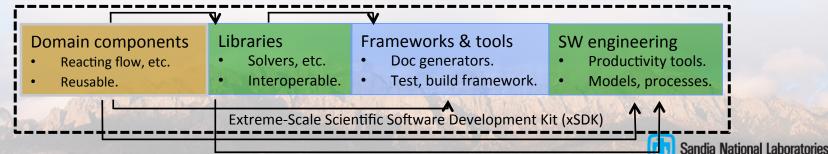

- Many computations work on data stored in multi-dimensional arrays:
 - Finite differences, volumes, elements.
 - Sparse iterative solvers.
- Dimension are (k,l,m,...) where one dimension is long:
 A(3,1000000)
 - 3 degrees of freedom (DOFs) on 1 million mesh nodes.
- A classic data structure issue is:
 - Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) ... or
 - By node: A(1,1), A(1,2), ...
- Adherence to raw language arrays forces a choice.
- Physics i,j,k should not dictate storage i,j,k.

Kokkos: Execution and memory space abstractions

- What is Kokkos:
 - C++ (C++11) template meta-programming library, part of (and not) Trilinos.
 - Compile-time polymorphic multi-dimensional array classes.
 - Parallel execution patterns: For, Reduce, Scan.
 - Loop body code: Functors, lambdas.
 - Tasks: Asynchronous launch, Futures.
- Available independently (outside of Trilinos):
 - https://github.com/kokkos/
- Getting started:
 - GTC 2015 Content:
 - <u>http://on-demand.gputechconf.com/gtc/2015/video/S5166.html</u>
 - <u>http://on-demand.gputechconf.com/gtc/2015/presentation/S5166-H-</u> <u>Carter-Edwards.pdf</u>
 - Programming guide doc/Kokkos_PG.pdf.

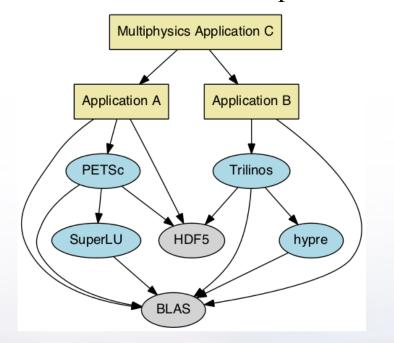

Consider an array/patterns library, e.g., Kokkos.

Develop your own light-weight array abstraction layer.


Strategy 2: Application Composition and Software Eco-systems

xSDK focus

- Common configure and link capabilities
 - xSDK users need full and consistent access to all xSDK capabilities
 - Namespace and version conflicts make simultaneous build/ link of xSDK difficult
 - Determining an approach that can be adopted by any library or components development team for standardized configure/link processes
- Library interoperability
- Designing for performance portability



Standard xSDK package installation interface

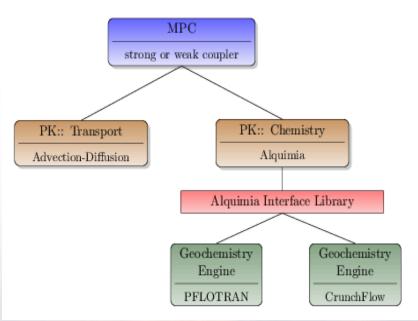
- ⁶¹ Motivation: Obtaining, configuring, and installing multiple independent software packages is tedious and error prone.
 - Need consistency of compiler (+version, options),
 3rd-party packages, etc.
 - Approach: Define a *standard xSDK package installation interface* to which all xSDK packages will subscribe and be tested

Accomplishments:

- Work on implementations of the standard by the hypre, PETSc, SuperLU, and Trilinos developers
- PETSc can now use the "scriptable" feature of the installers to simultaneously install hypre, PETSc, SuperLU, Trilinos with consistent compilers and 'helper' libraries.

xSDK Build Example

Impact: Foundational step toward seamless combined use of xSDK libraries, as needed by BER use cases and other multiphysics apps


Enabling Interoperable Biogeochemistry with Alquimia

Several geochemistry libraries are well established in the community making geochemistry ideal to explore componentization and interface design. *Alquimia* is an interface library, and does not perform any reaction calculations.

□ Alquimia currently assumes reactive transport uses operator-splitting.

62

- Fully-implicit reactive transport support is being developed in collaboration with IDEAS.
- Assists in enforcing geochemical conditions (speciation) for transport boundary conditions
- Alquimia can facilitate benchmarking of geochemical capabilities in existing codes.
- Geochemistry libraries, such as PFLOTRAN and CrunchFlow, have implemented interfaces to Alquimia.

Schematic of the Alquimia interface library providing uniform access to PFLOTRAN and CrunchFlow geochemistry in Amanzi

Alquimia is open source, https://bitbucket.org/berkeleylab/alquimia

TRILINOS COMMUNITY 2.0

Trilinos Community 2.0

- GitHub, Atlassian:
 - Open source SW development, tools platforms.
 - Workflows for high-quality community SW product development.
- Trilinos value proposition:
 - Included these same things, but are re-evaluating.
 - Moving to GitHub.
 - Supporting dual-mode package model.
- New types of Trilinos packages:
 - Internal: Available only with Trilinos (traditional definition).
 - Exported: Developed in Trilinos repository, available externally.
 - Imported: Developed outside of Trilinos, available internally.

Trilinos Community 2.0

- Case studies:
 - TriBITS: Was an internal package, now external.
 - DTK: Has always been external.
 - Kokks: Was internal. Is now developed externally, available internal.
 - Move to GitHub: Several packages splitting off.
- Issues to Resolve:
 - Package inclusion policies: Define for each package type.
 - Quality criteria: Contract between Trilinos and packages.
 - Workflows: Development, testing, documentation, etc.
 - Trilinos on GitHub: Almost there.
 - Trilinos Value Proposition: Re-articulate Trilinos Strategic Goals implications.

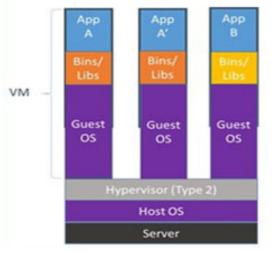
Common Look-and-feel Expectations

- Consistent data management practices.
- Consistent API styles.
- Testing and other quality metric thresholds, e.g., coverity.
- What else?

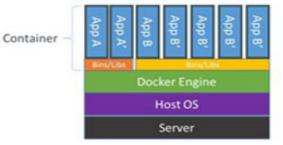
xSDK Minimum Compliance Requirements:

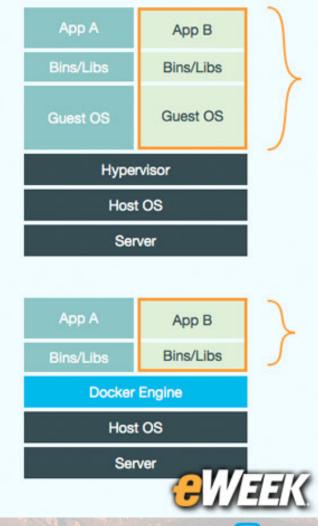
- M1. Each xSDK compliant package must support the the standard xSDK cmake/configure options.
- M2. Each xSDK package must provide a comprehensive test suite that can be run by users and does not require the purchase of commercial software
- M3. Each xSDK compliant package that utilizes MPI must restrict its MPI operations to MPI communicators that are provided to it and not use directly MPI_COMM_WORLD.
- M4. Each package team must do a 'best effort' at portability to key architectures, including standard Linux distributions, GNU, Clang, vendor compilers, and target machines at ALCF, NERSC, OLCF. Apple Mac OS and Microsoft Windows support are recommended.
- M5. Each package team must provide a documented, reliable way to contact the development team; this may be by email or a website. The package teams should not require users to join a generic mailing list (and hence receive irrelevant email they must wade through) in order to report bugs or request assistance.
- M6 11...

https://ideas-productivity.org/resources/xsdk-docs: Open for public comment.


xSDK Recommended Compliance Requirements:

- R1. It is recommended that each package have a public repository, for example at github or bitbucket, where the development version of the package is available. Support for taking pull requests is also recommended.
- R2. It is recommend that all libraries be tested with valgrind for memory corruption issues while the test suite is run.
- R3. It is recommended that each package adopt and document a consistent system for propagating/returning error conditions/exceptions and provide an API for changing the behavior.
- R4. It is recommended that each package free all system resources it has acquired as soon as they are no longer needed.





Containers vs. VMs

Containers are isolated, but share OS and, where appropriate, bins/libraries

Typical Trilinos Cmake Script (edison)

cmake \

-D MPI_CXX_COMPILER="CC" \

-D MPI_C_COMPILER="cc" \

-D MPI_Fortran_COMPILER="ftn" \

-D Teuchos_ENABLE_STACKTRACE:BOOL=OFF \

-D Teuchos_ENABLE_LONG_LONG_INT:BOOL=ON \

-D Trilinos_ENABLE_Tpetra:BOOL=ON \

-D Tpetra_ENABLE_TESTS:BOOL=ON \

-D Tpetra_ENABLE_EXAMPLES:BOOL=ON \

-D Tpetra_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \

-D Teuchos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \

-D TPL_ENABLE_MPI:BOOL=ON \

-D CMAKE_INSTALL_PREFIX:PATH="\$HOME/opt/Trilinos/tpetraEval" \

-D BLAS_LIBRARY_DIRS="\$LIBSCI_BASE_DIR/gnu/lib" \

-D BLAS_LIBRARY_NAMES="sci" \

-D LAPACK_LIBRARY_DIRS="\$LIBSCI_BASE_DIR/gnu/lib" \

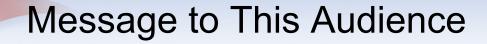
-D LAPACK_LIBRARY_NAMES="sci" \

-D CMAKE_CXX_FLAGS="-O3 -ffast-math -funroll-loops" \

WebTrilinos webtrilinos matrix portal

C++ Code Page 🖻	web trilinos matrix porta
Insert template select Insert or Reset Code Text area with 20 rows and 80 columns. Redisplay Run with 1 process(es) and 1 thread(s). Please type your C++ code below.	<pre>C++ Code Page ? Insert template select</pre>
Run Code Color Code This web site is hosted by St. John's University, MN. Credits: M. Sala, M. Phenow, J. Hu, R. Tuminaro. Last updated on June 30, 2015 - 9:53 am CDT.	<pre>// The problem is defined on a 2D grid, global size is nx * nx. int nx = 30; GaleriList.set("n", nx * nx); GaleriList.set("nx", nx); GaleriList.set("ny", nx); Epetra_Map* Map = Galeri::CreateMap("Linear", Comm, GaleriList); Epetra_RowMatrix* A = Galeri::CreateCrsMatrix("Laplace2D", Map, GaleriList); Epetra_RowCode</pre>
A STATE OF A	This web site is hosted by St. John's University, MN. Credits: M. Sala, M. Phenow, J. Hu, R. Tuminaro.

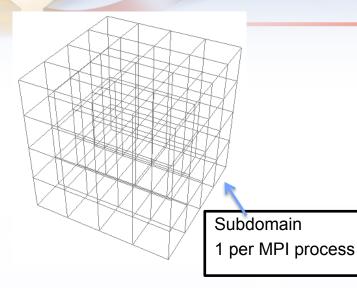
Last updated on June 30, 2015 - 9:53 am CDT.


Trilinos usage via Docker

- WebTrilinos Tutorial
 - https://hub.docker.com/r/sjdeal/webtrilinos
- <u>http://johntfoster.github.io/posts/peridigm-without-</u> building-via-Docker.html
 - docker pull johntfoster/trilinos
 - docker pull johntfoster/peridigm
 - docker run --name peridigm0 -d -v `pwd`:/output johntfoster/peridigm \

Peridigm fragmenting_cylinder.peridigm

– Etc...

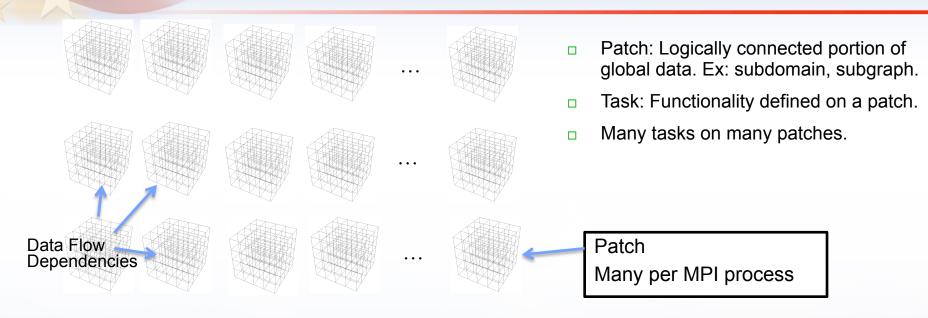

Consider what software ecosystem(s) you want your software to be part of and use.

Strategy 3: Toward a New Application Architecture

Classic HPC Application Architecture

□ Strengths:

- Portable to many specific system architectures.
- Separation of parallel model (SPMD) from implementation (e.g., message passing).
- Domain scientists write sequential code within a parallel SPMD framework.
- Supports traditional languages (Fortran, C).
- Many more, well known.


- Logically Bulk-Synchronous, SPMD
- Basic Attributes:
 - Halo exchange.
 - Local compute.
 - Global collective.

Weaknesses:

- Not well suited (as-is) to emerging manycore systems.
- Unable to exploit functional on-chip parallelism.
- Difficult to tolerate dynamic latencies.
- Difficult to support task/compute heterogeneity.

Task-centric/Dataflow Application Architecture

□ Strengths:

- Portable to many specific system architectures.
- Separation of parallel model from implementation.
- Domain scientists write sequential code within a parallel framework.
- Supports traditional languages (Fortran, C).
- Similar to SPMD in many ways.

More strengths:

- Well suited to emerging manycore systems.
- Can exploit functional on-chip parallelism.
- Can tolerate dynamic latencies.
- Can support task/compute heterogeneity.

Task on a Patch

- Patch: Small subdomain or subgraph.
 - Big enough to run efficiently once its starts execution.
 - CPU core: Need ~1 millisecond for today's best runtimes (e.g. Legion).
 - GPU: Give it big patches. GPU runtime does manytasking very well on its own.
- Task code (Domain scientist writes most of this code):
 - Standard Fortran, C, C++ code.
 - E.g. FEM stiffness matrix setup on a "workset" of elements.
 - Should vectorize (CPUs) or SIMT (GPUs).
 - Should have small thread-count parallel (OpenMP)
 - Take advantage of shared cache/DRAM for UMA cores.
 - Source line count of task code should be tunable.
 - Too coarse grain task:
 - GPU: Too much register state, register spills.
 - CPU: Poor temporal locality. Not enough tasks for latency hiding.
 - Too fine grain:
 - Too much overhead or
 - Patches too big to keep task execution at 1 millisec.

Portable Task Coding Environment

- Task code must run on many types of cores:
 - Standard multicore (e.g., Haswell).
 - Manycore (Intel PHI, KNC, KNL).
 - GPU (Nvidia).
- Desire:
 - Write single source.
 - Compile phase adapts for target core type.
 - Sounds like what?
- Kokkos (and others: OCCA, RAJA, ...):
 - Enable meta programming for multiple target core architectures.
- Future: Fortran/C/C++ with OpenMP 4:
 - Limited execution patterns, but very usable.
 - Like programming MPI codes today: Déjà vu for domain scientists.
- Other future: C++ with Kokkos/OCCA/RAJA derivative in std namespace.
 - Broader execution pattern selection, more complicated.

Task Management Layer

- New layer in application and runtime:
 - Enables (async) task launch: latency hiding, load balancing.
 - Provides technique for declaring inter-task dependencies:
 - Data read/write (Legion).
 - Task A writes to variable x, B depends on x. A must complete before B starts.
 - Futures:
 - Explicit encapsulation of dependency. Task B depends on A's future.
 - Alternative: Explicit DAG management.
 - Aware of temporal locality:
 - Better to run B on the same core as A to exploit cache locality.
 - Awareness of data staging requirements:
 - Task should not be scheduled until its data are ready:
 - If B depends on remote data (retrieved by A).
 - Manage heterogeneous execution: A on Haswell, B on PHI.
 - Resilience: If task A launched task B, A can relaunch B if B fails or times out.
- What are the app vs. runtime responsibilities?
- How can each assist the other?

Open Questions for Task-Centric/Dataflow Strategies

- Functional vs. Data decomposition.
 - Over-decomposition of spatial domain:
 - Clearly useful, challenging to implement.
 - Functional decomposition:
 - Easier to implement. Challenging to execute efficiently (temporal locality).
- Dependency specification mechanism.
 - How do apps specify inter-task dependencies?
 - Futures (e.g., C++, HPX), data addresses (Legion), explicit (Uintah).
- Roles & Responsibilities: App vs Libs vs Runtime vs OS.
- Interfaces between layers.
- Huge area of R&D for many years.

Data challenges:

- Read/write functions:
 - Must be task compatible.
 - Thread-safe, non-blocking, etc.
- Versioning:
 - Computation may be executing across multiple logically distinct phases (e.g. timesteps)
 - Example: Data must exist at each grid point and for all active timesteps.
- Global operations:
 - Coordination across task events.
 - Example: Completion of all writes at a time step.

Execution Policy for Task Parallelism

- TaskManager< ExecSpace > execution policy
 - Policy object shared by potentially concurrent tasks TaskManager<...> tm(exec_space , ...); Future<> fa = spawn(tm , task_functor_a); // single-thread task Future<> fb = spawn(tm , task functor b);
 - Tasks may be data parallel
 - Future<> fc = spawn_for(tm.range(0..N) , functor_c);
 - Future<value_type> fd = spawn_reduce(tm.team(N,M) , functor_d); wait(tm); // wait for all tasks to complete
 - Destruction of task manager object waits for concurrent tasks to complete
- Task Managers
 - Define a scope for a collection of potentially concurrent tasks
 - Have configuration options for task management and scheduling
 - Manage resources for scheduling queue

Kokkos/Qthread LDRD

Manytasking: A Productive Application Architecture

- Atomic Unit: Task
 - Domain scientist writes code for a task.
 - Task execution requirements:
 - Tunable work size: Enough to efficiently use a core once scheduled.
 - Vector/SIMT capabilities.
- Utility of Task-based Approach:
 - Oversubscription: Latency hiding, load balancing.
 - Dataflow: Task-DAG or futures.
 - Resilience: Re-dispatch task from parent.
 - Déjà vu for apps developers: Feels a lot like MPI programming.
 - Universal portability: Works within node, across nodes.

Manytasking Implications

- Parallel Programming:
 - Task is small thread, vector/SIMT parallel only. (Fortran can do this, including the new Open Source LLVM-based Fortran!).
 - Parallel Task management is external concern.
- Task scheduling:
 - Runtime: Many tasks per node. Many tasks in-flight.
 - Parallelism across node components: Really important.
 - Issue: How to manage creation/completion rates.
- Resilience:
 - How to coordinate task protection (parent), re-dispatch (child).

Four Resilient Programming Models

- Relaxed Bulk Synchronous (rBSP)
- Skeptical Programming. (SP)
- Local-Failure, Local-Recovery (LFLR)
- Selective (Un)reliability (SU/R)

Toward Resilient Algorithms and Applications Michael A. Heroux arXiv:1402.3809v2 [cs.MS]

Resilience & Task-centric/Dataflow

- Relaxed Bulk Synchronous (rBSP)
 - Async tasking: Addresses same issues.
 - "Porous barriers":
 - Tasks contribute portion to global collective, move on.
 - Come back later to collect global result.
- Skeptical Programming. (SP)
 - Skepticism applied at task level.
 - Parent task can apply cheap validation test up child's return.
- Local-Failure, Local-Recovery (LFLR)
 - Applied at task level.
 - SSD storage available for task-level persistent store.
- Selective (Un)reliability (SU/R)
 - Parent task (at some level in the task graph) executes reliably.
 - Children are fast, unreliable.
 - Parent corrects or regenerates child task if it times out or SDC detected.

Message to This Audience

- Where does your software fit in a manytasking application framework?
- How will data be pass to/from your software?
- How can you bake resilience into your application?

Creating Incentives to Improve Productivity

Reproducibility & Independent Verification Requirement

- In order to publish a paper: Someone other than the authors must be able to reproduce the computational results.
- Latitude in "reproduce":
 - Exactly the same numerical results?
 - Exactly the same runtime?
 - Close, in the opinion of an expert reviewer?
- What about:
 - Access to the same computing environment?
 - High end systems?
- Lots of challenges.
- But just the expectation [threat] can drive efforts...

Fruits of the Threat

- Source management tools: In order to guarantee that results can be reproduced, the software must be preserved so that the exact version used to produce results is available at a later date.
- Use of other standard tools and platforms: In order to reduce the complexity of an environment, standard software libraries and computing environments will be helpful.
- **Documentation:** Independent verification requires that someone else understand how to use your software.
- Source code standards: Improves the ability of others to read your source code.
- **Testing:** Investment in greater testing makes sense because the software will be used by others.
- High-quality software engineering environment: If a research team is serious about producing high-quality, reproducible and verifiable results, it will want to invest in a high-quality SE environment to improve team efficiency.

Evidence: Cover letter excerpt from RCR candidate paper

Thank you for taking the time to consider our paper for your journal.

XXX has agreed to undergo the RCR process should the paper proceed far enough in the review process to qualify. To make this easier we have preserved the exact copy of the code used for the results (including additional code for generating detailed statistics that is not in the library version of the code).

ACM Transactions on Mathematical Software

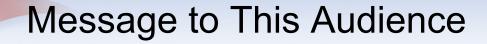
ACM TOMS

- TOMS RCR Initiative: Referee Data.
- Why TOMS? Tradition of real software that others use.
- Two categories: Algorithms, Research.
- TOMS Algorithms Category:
 - Software Submitted with manuscript.
 - Both are thoroughly reviewed.
- TOMS Research Category:
 - Stronger: Previous implicit "real software" requirement is explicit.
 - New: Special designation for replicated results.

ACM TOMS Reproducible Computational Results (RCR) Process

- Submission: Optional (for now) RCR option.
- Standard reviewer assignment: Nothing changes.
- RCR reviewer assignment:
 - Concurrent with the first round of standard reviews
 - Known to and works with the authors during the RCR process.
- RCR process:
 - Multi-faceted approach.
- Publication:
 - Replicated Computational Results Designation.
 - The RCR referee acknowledged.
 - Review report appears with published manuscript.

RCR Process


- Independent replication:
 - Transfer of or pointer to software given to RCR reviewer.
 - Guest account, access to software on author's system.
 - Detailed observation of the authors replicating the results.
- Review of computational results artifacts:
 - Results may be from a system that is no longer available.
 - Leadership class computing system.
 - In this situation:
 - Careful documentation of the process.
 - Software should have its own substantial verification process.

Status

- First RCR paper available:
 - Editorial introduction.
 - van Zee & van de Geijn, BLIS paper.
 - Referee report.
- 1 RCR paper per TOMS issue.
 - Hogg & Scott next.

Be prepared to have someone else replicate your results.

cse-software.org screen shot

cse-software.org

Computational Science & Engineering Software Forum

HOME ANNOUNCEMENTS WORKING GROUPS JOIN

Computational Science & Engineering (CSE) Software Forum

Who are we?

The Computational Science & Engineering (CSE) Software Forum is an international group of researchers and other stakeholders from national laboratories, academic institutions, and industry who are interested in (and concerned about) **development processes for software for computational science and engineering** and related technical computing areas, with a particular interest in CSE **on high-performance (parallel) computers**.

What are we doing?

We're creating a clearinghouse to **gather**, **discuss**, **and disseminate** experiences, techniques, tools, and other resources for the entire lifecycle of CSE software, from initial concept through the growth phase to maturity, re-investment, and eventually to retirement.

We want to **raise awareness** of the importance of good software practices to scientific productivity and to the quality and reliability of computationally-based scientific results, as well as raising awareness of the increasing challenges facing CSE software developers as high-end computing heads to extreme scales.

RECENT	POSTS

Computational Science & Engineering Software Sustainability and Productivity Challenges (CSESSP Challenges) Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2.1@SciPy) Third International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering 3rd Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2) CFP1

Search

Summary

- Thread-scalable algorithms making steady progress: "easy".
- Resilience strategies too, and reliability will persist until we are ready: "easy".
- Big task: Transforming application base to new systems and beyond.
- SW engineering focus is important for HPC:
 - Pursuing efficiency negatively impacts many other quality metrics.
- Productive application designs will require disruptive changes:
 - Array and execution abstractions needed for portability.
 - Reuse via composition is attractive (think Android/iOS, Docker environments).
 - A Task-centric/dataflow app architecture is very attractive for performance portability.
- Journal, funding agency policies can provide productivity incentives:
 - Reproducibility expectations: Better SW practices are a natural reaction.
 - Funding Proposals:
 - We expect data management plans.
 - Can we start expecting a SW quality management plan?

Final Thought: Commitment to Quality

Canadian engineers' oath (taken from Rudyard Kipling):

My Time I will not refuse; my Thought I will not grudge; my Care I will not deny toward the honour, use, stability and perfection of any works to which I may be called to set my hand.

http://commons.bcit.ca/update/2010/11/bcit-engineering-graduates-earn-their-iron-rings

