

GPU スパコンにおける大規模 HPC アプリケーションのスケーラビリティ

— 格子系流体計算 —

Takayuki Aoki

Global Scientific Information and Computing Center Tokyo Institute of Technology

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

General-Purpose Graphics Processing Unit

Major differences from Previous Accelerators

ClearSpeed, Grape, , ,

High Memory Bandwidth suitable for wide variety of applications

Consumer Product inexpensive

Software Development Environment

CUDA, Open CL

NVIDIA GPU

		Intel Core i7 Extreme	GeForce GTX 285	GeForce GTX 480 Fermi	
GPU	Peak Performance [GFlops]	102.4	708*,1063	1300	
	Number of Processor	4	240	480	
	Core Clock [MHz]	3200	1476	1400	
Memory	Bandwidth[GB/s]	32	159	177	
	Memory Interface [bit]	64	512	384	
	Memory Data Clock [MHz]	1333 (DDR3)	2484 (GDDR3)	(GDDR5)	
	Capacity [GB]		2046	1500	
B/F	Bandwidth/Performance	0.312	0.149	0.136	
		-			

					a	
<u>نہ</u> 15	45	25	45	æ	45	2

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

NVIDIA GPU Architecture

Arithmetic INTENSITY: FLOP/Byte

FLOP = number of FP operation for applications
Byte = Byte number of memory access for applications
F = Peak Performance of floating point operation
B = Peak Memory Bandwidth

Classification of CFD

Compressible fluid analysis

Supersonic flow, Acoustic wave, Explosion, Shock wave, ...

High-accurate numerical methods:

T. Aoki, Comp. Phys. Comm., Vol.102, No.1-3, 132-146 (1997)

- Y. Imai, T. Aoki and K. Takizawa, J. Comp. Phys., Vol. 227, Issue 4, 2263-2285 (2008)
- K. Kato, T. Aoki, M. Yoshida, et. al., Int. J. Numerical Methods in Fluids, Vol.51, 1335-1353 (2006)
- Y. Imai, T. Aoki, J. Comp. Phys., Vol.217, 453-472 (2006)
- Y. Imai, T. Aoki, J. Comp. Phys., Vol.215, 81-97 (2006)

Incompressible fluid analysis

- Most of flow phenomena in our daily life,
- Turbulent flow, Multi-phase flow, Reacting flow, ...
- Semi-implicit Time Integration → Poisson Solver

Rayleigh-Taylor Instability

Y. Imai, T. Aoki and K. Takizawa, J. Comp. Phys., Vol. 227, Issue 4, 2263-2285 (2008)

IDO-CF Scheme

Euler equation:

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} = 0$$

$$\boldsymbol{Q} = \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\rho} u \\ \boldsymbol{\rho} v \\ \boldsymbol{e} \end{bmatrix} \boldsymbol{E} = \begin{bmatrix} \boldsymbol{\rho} u \\ \boldsymbol{\rho} u^2 + p \\ \boldsymbol{\rho} u v \\ \boldsymbol{e} u + p u \end{bmatrix} \boldsymbol{F} = \begin{bmatrix} \boldsymbol{\rho} v \\ \boldsymbol{\rho} u v \\ \boldsymbol{\rho} v^2 + p \\ \boldsymbol{e} v + p v \end{bmatrix}$$

Heavy fluid lays on light fluid and unstable.

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

Lattice Boltzmann Method Discretizing Boltzmann-BGK equation in the momentum space using a finite set of velocities {e,} D2Q9 D3Q15 D3Q19... D2Q9 D3Q15 D3Q19

$$\frac{\partial f_i}{\partial t} + \mathbf{e}_i \cdot \nabla f_i = -\frac{1}{\lambda} \left(f_i - f_i^{eq} \right)$$

$$f_i^{eq} = \rho w_i \left[1 + \frac{3}{c^2} (\mathbf{e}_i \cdot \mathbf{u}) + \frac{9}{2c^4} (\mathbf{e}_i \cdot \mathbf{u})^2 - \frac{3}{2c^2} (\mathbf{u} \cdot \mathbf{u}) \right]$$

i is the value in the direction of

- ith discrete velocity e_i is the discrete velocity set;
- w_i is the weighting factor
- c is the particle velocity
- **u** is the macroscopic velocity

Lattice Boltzmann Method

1-D domain decomposition and GPU-to-GPU communication

TSUBAME 1.2 node detail SunFire X4600

Multi-GPU Scalability

Lab. Machine (RED & BLACK)

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

nputing Center, Tokyo Institute of Technolog

Next Generation

Weather Prediction

Collaboration: Japan Meteorological Agency

Meso-scale Atmosphere Model:

Cloud Resolving Non-hydrostatic model

Compressible equation taking consideration of sound waves.

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

Atmosphere Model

Dynamic Process:

Full 3-D Navior-Stokes Equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla P - 2\Omega \times \boldsymbol{u} - \Omega \times (\Omega \times \boldsymbol{r}) + \boldsymbol{g} + \boldsymbol{F}$$

Physics Process:

Cloud Physics, Moist, Solar Radiation, Condensation, Latent heat release, Chemical Process, Boundary Layer

So called "Parameterization" including many empirical rules.

WRF GPU Computing

WRF (Weather Research and Forecast)

Community Code developed by NCAR, NCEP, OU, NOAA/FSL, AFWA

WSM5 (WRF Single Moment 5-tracer) Microphysics*

Represents condensation, precipitation and thermodynamic effects of latent heat release

1 % of lines of code, 25 % of elapsed time

 \Rightarrow 20 x boost in microphysics (1.2 - 1.3 x overall improvement)

WRF-Chem**

provides the capability to simulate chemistry and aerosols from cloud scales to regional scales

 \Rightarrow x 8.5 increase

•Michalakes, J. and M. Vachharajani: GPU Acceleration of Numerical Weather Prediction. *Parallel Processing Letters Vol. 18 No. 4. World Scientific. Dec. 2008. pp. 531—548*

**John C. Linford, John Michalakes, Manish Vachharijani, and Adrian Sandu. Multi-core acceleration of chemical kinetics for simulation and prediction, *proceedings of the 2009 ACM/IEEE conference on supercomputing (SC'09), ACM, 2009*.

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

WRF versus ASUCA

ASUCA : developed by Japan Meteorological Agency (JMA) for the next-generation weather prediction

Meso-scale non-hydrostatic Atmosphere Model

Time-splitting method: long time step for flow

u, v (~ 100 m/s), w (~ 10 m/s) << sound velocity (~300/ms)

HEVI (Horizontally explicit Vertical implicit) scheme Horizontal resolution ~ 1 km Vertical resolution ~ 100 m

1-D Helmholtz equation (like Poisson eq.) 📥 sequential process

ASUCAにおける計算の流れ

Single GPU Performance

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

Multi-GPU ASUCA Performance

Multi-GPU ASUCA Performance GPU

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

Dendrite Solidification

Dendrite Solidification

Allen-Cahn Equation based on Phase Field Model

$$\beta = -\frac{15L}{2W} \frac{T - T_m}{T_m} \phi(1 - \phi) \qquad \varepsilon = \overline{\varepsilon} \left(1 - 3\gamma + 4\gamma \frac{\phi_x^4 + \phi_y^4 + \phi_z^4}{|\nabla \phi|^4} \right)$$

Thermal Conduction

$$\frac{\partial T}{\partial t} = k\nabla^2 T + \frac{L}{C} 30\phi^2 (1-\phi) \frac{\partial \phi}{\partial t}$$

↑ Introduction of nonisotropic surface energy

Second-order Finite Difference Method and 1st-order Euler Time Integration

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

35

Dependence on Parameters

 $\gamma = 0.1, A=0.01$

γ = 0.075, A=0.01

γ = 0.075, A=0.01

 $\gamma = 0.015$, A=0.01, Δt =half

γ = 0.075, A=0.005

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

Multi-GPU Peformance w/o overlapping GPU 10 5 Performance [TFLOPS] 1920 × 1920 × 1920 $960 \times 960 \times 960$ 1 512 × 512 × 512 0.5 512x512x512 960x960x960 1920x1920x1920 1D 0.1 50 5 10 100 200 Number of GPUs

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

- Computational time becomes short for more GPU numbers
- Communication time is almost same
- The communication time can not be hidden for more than 32 GPUs

Electric Power Consumption for Multiple-GPU Applications

Comparing to TSUBAME Opteron CPU 1 core,

Tsunami: x100 (10 GPU = 1000 CPU) Lattice Boltzmann: ~ x100 Phase Field Model: x170

When we assume the acceleration is typically x100, 1 GPU < 200W for our applications

100 GPU: 20 kW 10000 CPU core of TSUBAME: 1MW (1000kW)

1/50 Ultra low Power

TSUBAME ~ 1MW/10000CPU

Comp

GPU

Multi-GPU Summary

Some CFD applications show good strong scalability up to 32 GPUs in the case of TSUBAME.

The balance between computation and communication performance becomes bad because of the high GPU performance.

In order to achieve high performance for multi-GPU application, the overlapping technique between computation and communication is very important.

Be careful for GPU-to-CPU data transfer (cudaMemcpy) and CPU-to-CPU data transfer (MPI library).

http://www.gsic.titech.ac.jp/kyodou/

複数GPUを試してみることのできる絶好の機会です。ご利用をお待ちしています。

東京工業大学・学術国際情報センターの中の研究会活動

活動内容:

- ・月に一度の GPU (CUDA) 講習会
- ・2~3ヵ月に一度の講演会
- ・一年に一度のシンポジウム(予定)
- ・個別のユーザーサポート(可能な範囲で)
- ・メーリングリストを通じた情報交換

東工大の教員・学生だけでなく、他大学・研究機関、民間 企業の方も参加(入会)可能。基本的に無料。

http://gpu-computing.gsic.titech.ac.jp/

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology