SACSIS2012 チュートリアル 神戸 2012年5月17日 16:00-17:30

ando-koji@aist.go.jp

 $MRAM, \mathcal{ZE}$ RAM (= STT-MRAM) スピントロニクス

コンピュータが熱い!

意味のないエネルギーの浪費!

困った! メモリはプロセッサに比べてとても遅い!

プロセッサとメモリの性能向上の比較

この30年間の進歩

プロセッサ ⇒ ~20,000倍 メモリ ⇒ 10倍以下

Hennessy and Patterson, Computer Architecture: A Quantitative Approach

ノーマリーオフコンピュータ実現への道

Compute Architecture

不揮発性現象とデバイス

高電圧(~20V)で 書き込む

大容量=安い

遅い(10 µ s~10 ms) 壊れる(10⁵回程度)

不揮発性現象とデバイス

原子配列の変化: PRAM、ReRAM

まあ大容量 (512Mb以上) NANDより速い(10ns~100ns) NANDより書換回数多い (10⁸~10¹³回程度)

(Samsung Press Releaseから)

不揮発性現象とデバイス

速い(数ns~100ns) 書換回数多い(10¹⁴回程度)

容量少ない (4Mb) ワークメモリ用途には書換回数が不足

強誘電現象 = 原子の移動

不揮発性現象とデバイス

強磁性: MRAM、HDD

速い(数ns~50ns)	
書換回数は無限回	

原子の動きが無い!

容量少ない(MRAMで16Mb)

各種メモリの代表的な特性

	大容量化	読み出し時間	書き込み時間	データ消去動作	書き換え回数
DRAM	0	50 ns	50 ns	不要	無制限
SRAM	×	1-80 ns	1-80 ns	不要	無制限
MRAM	Δ	数 ns – 50 ns	数 ns – 50 ns	不要	無制限
FeRAM	Δ	数 ns – 100 ns	数 ns – 100 ns	不要	1014以上
РСМ	0	20 ns – 80 ns	100 ns	-	10 ¹³ 以上
ReRAM	0	10-100 ns	10-100 ns	不要	10 ⁸ 以上
フラッシュ メモリ	Ø	50 ns(シリアル) 25 µs(ランダム)	30 ms/64kB	必要	10 ⁵

(NEDO電子・情報技術分野 技術ロードマップ 2011を元に作成)

市販メモリ・ストレージの特徴

15

磁気コアメモリ (1950年代から) *still in Space*?

~ 1Mbit

~ 16 Mbit

超Gbit

なぜ今、スピントロニクスなのか?

スピン = 究極の微小磁石

スピントロニクス

エレクトロニクス : 運動量⇔電界

磁気工学 : 角運動量⇔磁界

磁化=電子スピンの集団

スピントロニクス : 角運動&運動量⇔電流・電界

電子スピンの向きと、電子(電荷)の空間移動

スピン情報と電気情報の変換=磁気伝導特性

1985年 巨大磁気抵抗効果 (GMR)の発見

スピン(磁化)の向きで電気抵抗が変わる(MR比)!

コイルを使用しないで、電気的に スピン(磁石)の向きを読めた。

磁気トンネル接合 (MTJ)の磁気抵抗 (TMR)効果

スピン(磁化)の向きで電気抵抗が変わる!

電気的にスピンの向きを読める。(コイルを使用しない)

トンネル磁気抵抗(MTJ)素子のTMR効果

24

MRAM

電流で磁化方向(情報)を

読み出す

MRAM(市販品)

Motorola \Rightarrow Freescale \Rightarrow Everspin

2006年 MRAM量產開始

容量: 256kb~16Mb

動作温度:-40℃~125℃ (150℃でも動作)

```
【応用】
エ業用コントローラー
RAIDコントローラ
SSD用キャッシュ(バッファロー)
宇宙ロケット(JAXA)
航空機(Airbus A350)
競技用オートバイ(BMW)
ニューロンチップ
```


http://www.everspin.com/

磁気コアメモリ (1950年代から) *still in Space ?*

~ 1Mbit

~ 16 Mbit

超Gbit

トンネル磁気抵抗(MTJ)素子のTMR効果

28

トンネル障壁層の対称性

△1対称性の電子だけが トンネル

完全単結晶 Fe/MgO/Fe MTJ

TMR effect of Magnetic Tunnel Junction (MTJ)

現在市販されている世界中のハードディスクは CoFeB/MgO/CoFeB-MTJ素子を使用している

TEM image of MgO-TMR head (Fujitsu)

MgO-TMR head (TDK)

磁気コアメモリ (1950年代から) *still in Space ?*

~ 1Mbit

MRAM (Everspin) 量産中

~ 16 Mbit

超Gbit

37

MRAM

書込み ワード線 (コイル) 38

スピンRAM (STT-MRAM)

スピン注入 ↓ スピントルク ↓ 磁化反転

Slonczewski, JMMM **159**, L1 (1996). Berger, PRB **54**, 9353 (1996).

スピン注入磁化反転(CIMR)

Slonczewski, JMMM **159**, L1 (1996). Berger, PRB **54**, 9353 (1996).

MgO-MTJを用いた最初のCIMR実験(産総研)

H. Kubota et al., Jpn. J. Appl. Phys. 44, L1237 (2005).

MTJ size : 70 x 160 nm

 $J_{c0}(@1ns) = 2 \times 10^7 \text{ A/cm}^2$

Al₂O₃-MTJを用いた最初のCIMR Huai *et al.* (Grandis) APL 2004

スピン注入 ↓ スピントルク ↓ 磁化反転

Slonczewski, JMMM **159**, L1 (1996). Berger, PRB **54**, 9353 (1996).

スピン注入磁化反転(CIMR) 42

~ 1Mbit

~ 16 Mbit

超Gbit

スピンRAM (STT-MRAM)

- CoFeB/MgO/CoFeB-MTJ
- 4 kbit, fast read/write (~2 ns)
- 世界最初の集積報告

- 日立/東北大 ISSCC 2007
 - CoFeB/MgO/CoFeB-MTJ
 - 2 Mbit

Djayaprawira et al., App. Phys. Lett. 86, 092502 (2005).

10年間、記録内容が変わらずに保持されること

面内磁化から垂直磁化へ

超GbitのSpin-RAMには新構造MTJが必要

従来構造

新構造

しかし2006年には、垂直磁化MTJ素子のCIMRは不可能と思われていた! 大きな磁気異方性は、同時に書き込み電流を増大させるはず!

NEDOスピントロニクス不揮発性機能技術Pj (2006-2010) 産総研、東芝、阪大、東北大、電通大 47

垂直磁化MTJ素子の低電流スピン注入磁化反転

H.Yoda *et al.*, ECS 2008, T.Kishi *et al.*, IEDM 2008

• Cell

Fe based L10 Materials

50nm diameter

T.Daibou et al., Intermag-MMM 2010

Fe based L10 Materials

垂直磁化GMR、MTJのCIMR電流低減化の歴史

垂直スピンRAMはCMOSで十分駆動可能

- 垂直磁化MTJ素子-

大きなTMR効果が出るのか?

垂直磁化MTJ素子のTMR効果の増大の歴史

室温におけるTMR効果

スピンRAMのための垂直磁化MgO-MTJ

NEDO スピントロニクス不揮発性機能技術プロジェクト

▶低パワー書き込み:	Ic = 7 μ A, Jc= 0.3 MA/cm ²
▶ 高読み出し信号:	ГMR > 200 %
▶高データ保持性 :	$\Delta > 60$
▶高速スイッチング	: < 30 nsec
≻小さなbitサイズ	: $F < 30 \text{ nm}$
≻高書換耐性	: 無限回 (推定値)
≻高信頼書き込み	: バックホッピング 無し

ユニバーサルメモリ
不揮発
ギガビット容量
高速
低電力
データ保持
無限書換耐性

垂直磁化MTJを用いた世界最初のスピンRAM (2010年2月) (東芝:NEDOスピントロニクス不揮発性機能技術プロジェクト)

Supply Voltage (mV)

30 nm 垂直磁化MTJ

2011年7月 東芝

MTJ Shape	30 nm circle
pulse width	30 nsec
CIMR current	15 µ A
TMR	150 %
data retention	more than 10 yrs
tunnel barrier life time	more than 10 yrs

ギガビット大容量スピンRAM技術が 確立された!

スピンRAMはCMOS作製プロセスと完全に整合

Hosomi et al. (Sony) IEDM 2005

MTJ素子の動作電圧 < 0.5V (フラッシュは20V程度)

垂直スピンRAM:1Gbit相当でMgO障壁の寿命を確保

東芝

垂直スピンRAM: 誤書込みの無い安定動作を確認

東芝

垂直磁化スピンRAMのセル面積は小さい!

微細なFで小さなセル面積 ──> 高密度メモリ

垂直スピンRAMの実現で、ITRSの予測を大幅前倒し

DRAM, スピンRAMのチップサイズトレンド

年

2011年7月 東芝ーハイニクス共同開発開始

韓国ハイニックス社とのMRAM技術の共同開発について 2011年07月13日 当社は、本日、韓国ハイニックス社と、MRAM (Magnetoresistive Random Access Memory:磁気抵抗変化型ランダムアクセスメモリ) 技術を共同開発することに合意しました。今回の合意に基づき、韓 国・利川(イチョン)にあるハイニックス社の研究施設に両社の技術者 を集結し、共同開発を行う計画です。 (中略) 今回、MRAM開発に実績のあるハイニックス社との共同開発によ り、開発コストの負担を抑制しつつ、MRAMの実用化に向けた取り 組みを加速するとともに、MRAMの早期実用化によりメモリシステム ビジネスを推進していきます。 また、ハイニックス社とは今後の開発動向を確認しながら、将来的 な製造での協業についても、今後協議していく予定です。 (後略)

|東芝ニュースリリースより抜粋|

メインメモリーの不揮発化が可能になった!

Latency (access speed) ALU/ **Power Gating** Core < 1 ns (2007 Core 2) FlipFlop **Register files** Cache (L1) ~3 ns Cache (L2, L3) "技術"は Display **Main memory** ~30 ns 確立された! Peripheral $> 10 \,\mathrm{ms}$ **Storage**

Compute Architecture

スピンRAMはキャッシュに使えるか?

スピンRAMはキャッシュに使えるか?

SRAMに対するスピンRAMの利点

▶ 不揮発 ⇒ リーク電流低減

▶ 小さなセルサイズ ⇒ 高速

条件: MTJがCMOS並みに 高速・低電力で動作すれば

同一面積ならばキャッシュ容量増大 ──→ キャッシュミス減少

垂直磁化膜の高速書き込み実証

NEDOスピントロニクス不揮発性機能技術Pj

スピンRAMの書き込み電流は10nsより高速領域では急速に増大する

MTJ素子の書き込みエネルギー(10⁻¹³~10⁻¹⁴J)はCMOSより3桁大きい

Hosomi et al. (Sony) IEDM 2005

(CoFeB/MgO/CoFeB面内MTJ素子)

"不揮発性メモリのジレンマ"(東芝藤田) 1. 電力オーバーヘッド 書き込み電力増加分 > リーク電力減少分 2. 動作速度のオーバーヘッド 書き込み速度がSRAMより遅い

電圧印加だけで磁化反転ができるようになった!

* 不揮発性メモリのジレンマ*(東芝藤田)
1. 電力オーバーヘッド
書き込み電力増加分 > リーク電力減少分
2. 動作速度のオーバーヘッド
書き込み速度がSRAMより遅い

現状のMTJ素子技術で、キャッシュの不揮発化の効果は?

ハイブリッドMagneticキャッシュメモリの提案

安部他(東芝) 応用物理学会 2012年3月

パワーゲーティング込みの性能と電力消費のシミュレーション

<u>アプリケーション動作中</u>の短い時間も電源を遮断することにより、 消費電力削減幅を増やす。
垂直スピンRAMを用いたハイブリッドMagneticキャッシュの利点

L2への書き戻し時間

73

シミュレーション

L2キャッシュメモリパラメーター: 65nm CMOS Technology、 CACTI 5.3

"不揮発性メモリのジレンマ"

消費電力オーバーヘッド
書き込み電力増加分 > リーク電力減少分
動作速度オーバーヘッド
書き込み速度がSRAMより遅い

解決策

1. MTJ素子自体を低電力化、高速化

新材料、 新物理効果

2. 回路の工夫

SRAMとMTJの組み合わせ

3. システムの工夫

SRAM(書き込み志向)、スピンRAM(読み出し志向) の適材適所的利用

アクセス速度のシミュレーション

• システムレベル評価:処理速度まで

プロセッサーとメモリが消費する平均電力

NEDO ノーマリーオフコンピューティング基盤技術開発プロジェクト (H.23~H.27)

(NEDO HPから)

不揮発性メモリのジレンマ(消費電力と動作速度のオーバーヘッド)のマネージメント 79

パーソナルコンピュータの平均消費電力

不揮発性ディスプレー

ここまでの話は、メモリ + ロジック

不揮発性ロジック?

メモリ * ロジックの可能性は?

不揮発性ロジック(FeRAMベース)

Z80-base non-volatile CPU 14 ms cycle, 10ms CPU power-off (Rohm)

Rohm Press Release 2008から

Nonvolatile State Saver (RAMTRON)

FeRAM搭載マイコン (TI、富士通) ReRAM搭載マイコン (Panasonic)

4bit 不揮発性カウンター 電力計、ガスメータ、電子ボリューム (Rohm)

フラッシュFPGA (Lattice)

83

そんなに高速でなくて良い応用 ↓ 多様な不揮発性メモリが使用可能

不揮発性ロジック (MTJ素子でどこまで性能上がる?)

リコンフィギャラブル・ラッチセル(設計) (Iowa州立大、JAP 2000)

不揮発性D-F/F(設計) (東芝、NSTI-Nanotech 2005)

不揮発性D-F/F (試作) (NECプレスリリース2009年)

不揮発性ラッチ (試作)(T. Endoh et al, IEDM2011)84

まとめ

Compute Architecture

NEDO Spintronics Nonvolatile Devices Project (2006 – 2010)

Project Leader : K. Ando

Spin-RAM Working Group

AIST : Ando, Yuasa, Kubota, Fukushima, Yakushiji

TOSHIBA: Yoda, Kishi, Kai, Nagase, Kitagawa, Yoshikawa, Nishiyama, Daibou, Nagamine, Amano, Takahashi, Nakayama, Shimomura, Aikawa, Ozeki, Wanatabe, Ikegawa, Ito

Tohoku U. : Miyazaki, Ando, Ogane, Mizukami, Naganuma

Osaka U. : Suzuki, Nozaki, Seki, Tomita, Konishi

U. Electro-Commun. : Nakatani

NEDO Normally-Off Computing Project (2011 – 2015)

Project Leader : H. Nakamura

TOSHIBA Fujita, Abe, Nomura

Thank you for your attention!

概要

高速で動作する大容量の不揮発性メモリが実現できれば、ワーキングメモリや論理回路 が不揮発化され、計算能力が必要な瞬間以外は常に電源が切れている新構造のコン ピュータ(ノーマリーオフコンピュータ)ができるのではないかとの"妄想"に魅せられた講演 者は、この10年間ほど、磁性メモリMRAMの開発を通じて、その実現を目指してきた。そ の間、論理演算素子に求められる驚異的な動作速度や、パワーゲーティング技術の出現 などに驚かされ続きではあったものの、最近の不揮発性メモリ技術の進展は、ノーマリー オフコンピュータの実現可能性を大きく高めつつあると感じている。 講演では、MRAMを中心とする不揮発性メモリ開発の現状を紹介するとともに、そのコン ピュータアーキテクチャへの応用可能性に関する素人的な期待を述べ、コンピュータの専 門家の皆さんとの議論の糸口としたい。

(参考文献)

- K. Ando, S. Ikegawa, K. Abe, S. Fujita, and H. Yoda: "Roles of Non-Volatile Devices in Future Computer System: Normally-off Computer" in Energy-Aware Systems and Networking for Sustainable Initiatives, W.-C. Hu and N. Kaabouch, Eds., IGI Global, (2012年6月出版予 定).
- (2) 安藤功兒: "スピンでエレクトロニクスはどう変わる?"、応用物理 81,239 (2012).
- (3) K. Ando *et al.* : *"Spin-RAM for Normally-Off Computer"*, Proc. 11th Non-Volatile Memory Technology Symposium (NVMTS 2011), Shanghai, November 2011 (IEEE Xplore).
- (4) 安藤功兒:"*不揮発性デバイス ―ノーマリオフコンピュータは実現できるか―"*、電子情報通信学会誌、93,913 (2010).